
Math 299 Lecture 21: Proof of the Contrapositive

Proof of the contrapositive

It is a direct proof but we start with the contrapositive because

P =⇒ Q is equivalent to ¬(Q) =⇒ ¬(P ).

Why do we prove the contrapositive of the implication instead of the original implica-
tion?

What is the difference between proof of the contrapositive and proof by contradiction?

Example 1

Definition: An integer x is called even (respectively odd) if there is another integer k
for which x = 2k (respectively 2k+1).

Definition: Two integers are said to have the same parity if they are both odd or
both even.

Theorem: If x and y are two integers for which x+y is even, then x and y have the
same parity.



Example 2

Definition: An integer n is called a perfect square if there is another integer k such
that n = k2.

For example, 121 is a perfect square since 121 = 112.

Theorem If n is a positive integer such that n mod(4) is 2 or 3, then n is not a perfect
square.

Where could such a theorem be useful?

Exercises

1. Prove n is even if n3 is even.

2. Let n, a, b ∈ Z. If n - ab, then n - a and n - b.



Proof by Induction

Principle of Mathematical Induction :

For each natural number n, let P (n) be a statement. We like to demonstrate that P (n)
is true for all n ∈ N.

To show that P (n) holds for all natural numbers n, it suffices to establish the following:

I. Base case: Show that P (0) is true.
( If n ≥ 1, then we should start from P (1).)

II. Induction step:

(i) Assume that P (k) holds for an arbitrary k ∈ N.
This step is “Induction hypothesis”.

(ii) Show that ”P (k) is true” (a hypothesis) implies ”P (k + 1) is also true” (a
conclusion).

III. P(n) is true for all n ∈ N

Proof by induction
This is sometimes referred to as the domino effect. Once one of the dominoes topples

it causes the rest to topple as well.
P (0) =⇒ P (1), P (1) =⇒ P (2), P (2) =⇒ P (3), · · · . P (k) =⇒ P (k + 1).



All Horses Have the Same Color

I. Base case: One horse

The case with just one horse is trivial. If there is only one horse in the “group”, then
clearly all horses in that group have the same color.

II. Induction step:

Assume that n horses always are the same color. Let us consider a group consisting
of n+1 horses.

First, exclude the last horse and look only at the first n horses; all these are the same
color since n horses always are the same color.

Likewise, exclude the first horse and look only at the last n horses. These too, must
also be of the same color.

Therefore, the first horse in the group is of the same color as the horses in the middle,
who in turn are of the same color as the last horse. Hence the first horse, middle
horses, and last horse are all of the same color, and we have proven that:

If n horses have the same color, then n+1 horses will also have the same color.

III. Conclusion:

We already saw in the base case that the rule (“all horses have the same color”) was
valid for n=1.

The inductive step showed that since the rule is valid for n=1, it must also be valid
for n=2, which in turn implies that the rule is valid for n=3 and so on.

Thus in any group of horses, all horses must be the same color.

Do all horses indeed have the same color? Is the proof wrong or is the Principle of
Mathematical Induction not valid?


